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1. Phys.: Condens. Matter 3 (191) 5837-5845. Printed in the UK 

The effect of correlation properties of inhomogeneities 
on plasma excitations in a metal 

V A Ignatchenko and Yu I Mankov 
Kirensky Institute of Physics, Krasnayarsk 660036, USSR 

Received 30 April 1990, in final form 6 March 1991 

Abstract. We theoretically investigate the manifestations of the non-monotonic character 
and anisotropic peculiarities of the correlation functions of the inhomogeneities in the 
dispersion law and damping of plasma waves. The fallowing specific effects have been 
found: a change in the character of the modifications, dispersion law and damping for small 
wavenumhers; dependence of the plasma frequency shift a n  the direction of the wave 
propagation. We substantiate possibilities for developing the correlation spectroscopy of 
plasma waves which would enable us not only to measure a correlation radius of the 
inhomogeneities (thishas been suggested earlier). but also to obtain information in the form 
of the correlation function. 

1. Introduction 

It is well known nowadays that, in such inhomogeneous media as amorphous alloys and 
microcrystalline solid solutions, together with the structural inhomogeneities of atomic 
size there exist some inhomogeneities having a size of several tens, hundreds and even 
thousands of ingstroms. These inhomogeneities (they have various names such as 
middle-range order, large-scale inhomogeneities or long-wave correlations) are directly 
observed by electron optics methods [l, 21. The importance of studying these inhom- 
ogeneities is because their nature remains vague in many respects. At the same time we 
know that they determine many of the most important characteristicsof inhomogeneous 
materials. 

One of the methods for studying these inhomogeneities is the investigation of dis- 
persion law modifications caused by them and additional damping of different waves 
propagating in medium. For example, the study of the characteristic dispersion law 
modifications of spin waves (see [3] and the review in [4]) enabled the correlation radii 
of the structural inhomogeneities for many amorphous alloys in the region of about 
100 8, to be found. Inhomogeneities of size 10-100 8, have been determined [ 5 , 6 ]  for a 
number of alloys by a neutron scattering method. 

It is shown in theoretical work [7] that important information on the structure of 
the inhomogeneities could be obtained from an investigation of a dispersion law and 
damping of plasma waves. It follows from these papers that not only for spin waves (and 
elastic waves too 18)) but also for the dispersion law of plasma waves there must be a 
characteristic peculiarity in the vicinity of a wavenumher k ,  - r;' , where r, is the 
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correlation radius of the inhomogeneities. It is quite possible that the bend in the long- 
wave part of the plasma wave spectrum observed earlier [9.10] is due to this effect. 
However, an insignificant number of experimental points in the long-wave part of the 
spectrum enablesone to find only the lowest estimate for the correlation radiusr, > 5 A. 
Unfortunately, experiments with the aim of investigating the correlation radii of the 
inhomogeneities on the basis of the effects described in [7] have not been made yet. 

There is quite a different picture in the field of investigation of a law modification for 
spin waves. Here not only the possibility of determining the correlation radius but also 
information on the form of a correlation function of the inhomogeneities is now being 
considered [II, 121. 

In order to excite the interest of the experimentors engaged in the study of plasma 
waves, we shall show that certain information about the form of a correlation function 
can also be obtained from the spectrum and damping of plasma waves. 

V A Ignarchenko and Yu I Mankou 

2. Dispersion law of plasma waves 

In [7j the problems of dispersion law modifications and damping of plasma waves have 
been considered in the following approximations. Let the inhomogeneities create a 
slowly varying (ka 1, where k is a characteristic wavenumber and a is the lattice 
parameter) and a rather small random potential V(r ) .  Then the Hamiltonian of a 
semiclassical approximation has the form (see, e.g., [13]) 

where E(P) is the dispersion law of conduction electrons in an ideal crystal. 

the Fermi-Dirac distribution function 
The ground state of the conduction electrons in this approximation is described by 

whereA is anormalized constant, which isdetermined from theconditionof the electron- 
number conservation, and fF is the Fermi energy of an ideal crystal. We now use 
the approximation of the quadratic dispersion law of the conduction electrons and 
approximate a derivative a F O / a E  by the Dirac &function. The propagation of a plasma 
wave will be described by a system of equations consisting of the kinetic equation, 
the Maxwell equations and a material equation. We linearize the kinetic equation 
representing a distribution function of the electrons in the form 

F(I,  r, P )  = Fdr, P)  + V(L r. P) (3) 

where p(t, r,p) is a small addition to the equilibrium distribution function due to the 
electric field of the wave. Further we expand Fu into a series up to quadratic terms in 
V ( r )  and perform Fourier transformation with respect t o r  and t .  As a result, one may 
obtain (for details see [7]) a bulky integral equation for a random scalar function 
g ( k ,  w )  = k - j ,  wherekisthewavevectorofaplasmawaveandjisthecurrentdensity.The 
equation is averaged over the ensemble of random realizations of the inhomogeneities 
potential V ( r ) ,  assuming, for simplicity, that ( V ( r ) )  = 0. Then the obtained correlators 
are decoupled in the first non-vanishing approximation of perturbation theory (Bourret 
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approximation) in the parameter y ,  which is a relative mean-square fluctuation of the 
potential V(r ) :  

y = ( ( ~ ' ( r ) ) ) ' 1 2 / 2 ~ ~ .  (4) 

02 = w i [ l +  $ q Z  - y'S(q)]. 

Asaresult weobtain the dispersionlaw ofplasma wavesmodified by the inhomogeneities 
in a general form 

Here wp is the plasma frequency, q = k+/w and S(q) represents a sum of four integrals 
dependent on the spectral density of the inhomogeneities. 

At y = 0 this expression is reduced to  the unperturbed dispersion law of plasma 
waves corresponding to the long-wave approximation ka Q 1, and consequently q Q 1. 

The corrections to the dispersion law caused by the inhomogeneities are of the order 
y*. However, there is one more parameter of smallness in the problem: q. The estimates 
made in [7] show that with an account of this parameter the corrections in ( 5 )  have a 
different order of smallness: y ' /qz,  y'and y'q', where qc = k,uF/wp Q 1 and k, is the 
correlation wavenumber of the inhomogeneities. 

Whenonlythemajortermoftheorder y ' /q ;  remains,wehavefor9(q)thefollowing 
expression: 

(5) 

where S(k) is the normalized spectral density of the inhomogeneities: 

(V(k )V(k i ) ) / (V ' )  = S(k)a(k - ki) .  

K ( r )  = (V(x)V(x  + r ) ) / ( V 2 )  

(7) 

(8) 

The normalized correlation function of the inhomogeneities given by 

is related to the spectral density by a Fourier transformation, in accordance with the 
Wiener-Khintchin theorem for homogeneous random functions. 

The integrated region in (6) embraces the whole space of the wavevectors, although 
in obtaining this expression a quadratic dispersion law of plasma waves valid only for 
small k is used as a zero approximation. It is justified by the fact that the integrals are 
effectively cut by the spectral density S ( k )  for all values of k P k,. 

The real part of equation ( 6 )  determines the dispersion law modification, and its 
imaginary part determines damping of plasma waves due to scattering by the inhom- 
ogeneities. 

The following correlation function and the spectral density corresponding to it were 
used to obtain estimates in [7] :  

K ( r )  = exp(-k,r) S ( k )  = kc/n2(k: + k')*. (9) 
Rather bulky expressions were obtained for the spectrum and damping of plasma 

waves in a metal. In the limiting cases it follows from these expressions that 
(w'/wp)' 1 + $4' - 5(y2/q$)(1 - '8 U') k k, 

(w'/wp)2 = 1 + $4' - V(u'/qt)(l/u*) 

(10) 

(11) 

w"/wp  = lo(y2/q:)u 

w"/wp = P(y2/q$)( l /u ) .  

k B k C  

Here U = k/k,, w' = Re w ,  w" = Im w .  
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1 2 

Figure 1. ((I) Dispersion ( w ' / o J 2  and (b)  damp- 
ing d / w ,  of plasma waves (? = 6 x qc = 

3 O.l):curvesl,forthemonotaniccorrelationfunc- 
t i m  (9); curves 2, for the correlation function 
(13): ---. dispersion curve in a homogeneous 

? .:p 
1 2 

hlk,  metal. 

Figure 1 (curve 1) shows a modified dispersion curve w'(k )  and damping w"(k) in 
detail. The damping has a maximum at k = (V3 /2 )kc ;  in the vicinity of the same point 
there occurs a bend in the curve w'(k) .  

It may be shown that the same modification is obtained for different isotropic and 
monotonic correlation functions: Gaussian, Karman, etc. Some deviations are only in 
the numerical coefficient. Using different functions, one should take into account the 
renormalization of the correlation radii, which is determined by comparing 'correlation 
volumes' for different correlation functions [ 141: 

V ,  = (4n/3)r:  = K ( r )  dr. (12) 

3. Non-monotonic correlation functions 

The conclusions and estimates of [7] and of the previous section were obtained on 
the basis of the isotropic, monotonically decreasing correlation functions K ( r )  of the 
inhomogeneities. They also correspond to isotropic and monotonically decreasing spec- 
tral densities S(k). The various types of the inhomogeneity in the solids are described 
by these functions. For example, they describe frozen heat fluctuations of density, 
deformations, etc. 

However, there are some inhomogeneities which can only be described by the 
correlation functions of another type. It is shown in [ l l ,  121 that there are a number of 
physical effects which can lead to one and the same result: the formation of inhom- 
ogeneities whose spectral density has a tendency to decrease not only at k - m but also 
at k -+ 0. For example, theeffect of disintegration of supersaturated solidsolutions leads 
to this tendency. As a result of such disintegration some deviations in density of different 
signs are observed for small volumes of material. In [12] these deviations were called 
'Krivoglaz's spatial pulses', after a researcher who first turned his attention to this case 
[15]. The process of rejection of samples with randomly formed quasi-homogeneous 
parts of large size (the so-called 'quality filter'; see (121) leads to the same tendency. 
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Finally, the process of natural or artificial formation of the quasi-periodic structures 
(superlattices) results in this tendency. 

S(k)vanishingat k = Ocorresponds toalimitingcaseofmanifestation ofthe tendency 
for S(k) to decrease. Such S(k) and the correlation functions K ( r )  corresponding to 
them (they cross the abscissa axis once or more times) were called in [ll] functions of 
the second type. The functions lead to pronounced differences in the laws of damping 
of spin [ l l ]  and elastic [8] waves, in comparison with the laws corresponding to mon- 
otonically decreasing functions (functions of the first type). Thus, from a study of spin 
and elastic waves, one not only can find a correlation radius of the inhomogeneities but 
also can establish the type of the correlation function describing these inhomogeneities. 

In this paper we shall show that this information may, in principle, be obtained from 
the experimental investigation of plasma waves. 

As modelling we take the simplest correlation function of the second type [ll]: 

K , ( r )  = (1 - k,r /3)  exp(-k,r) S(k) = 4k,k2/3nz(k$  + k 2 ) 3 .  (13) 
Since the correlation function changes its sign. there must he a modulus K,(r)  in (12) 
when determining the correlation volume V,. The calculation of integral (6)  with this 
correlation function leads to a bulky expression whose real and imaginary parts are 
shown in figure 1 (curves 2). In the limiting case k Q k, we have 

( U ’ / W P ) ’  = 1 + gq2 - a(y’/qf)(l + 9 2 )  
w“/w,  = Y(Y2/qt)U3 

(14) 

In another limit k %- k, both the dispersion and the damping are described, as before, by 
the corresponding expressions (11); only U” takes a factor 4. 

Inhomogeneities of the second type, as well as those of the first type, lead to a 
decrease in the plasma frequency. However, from a comparison of (10) and (14) it is 
seen that the modification ~ ‘ ( 0 )  is three times smaller in this case. In the dispersion law 
the type of correlation function reveals itself at k < k,. The strongest deviations are 
obtained for k Q k,. In this region, inhomogeneities of the second type result not in an 
increase hut in a decrease in the coefficient before k2 in the dispersion law for small k .  
For 

1oy2/q: 1 (15) 
the coefficient may even change sign. This case is shown in figure 1. One should note 
that the inequality (15) does not violate the principal inequality of the perturbation 
theory used here: y z / q $  Q 1 as qt Q 1. 

For correlation Functions of the second type f o r k  Q k, there is also a modification of 
the exponent of k in the law of damping of plasma waves (from w“ - k to W“ - k3). This 
effect is similar to that calculated earlier for the modification of the law of damping of 
spin waves caused by both the fluctuations of anisotropy [16] (from W“ - k to W ”  - /$) 
and the fluctuations of exchange and magnetization [ll] (from w“ - ks to w” - k’). 

Thus, the modelling of inhomogeneities of the correlation functions of the first and 
second types result in different modifications in the spectrum and damping of plasma 
waves. The experimentalobservation of the anomalous dispersion in the long-wave part 
of the spectrum for plasma waves or evidence of its absence would allow us to draw a 
conclusion about the degree to which the correlation properties of the inhomogeneities 
are close-to the first or second type. A similar conclusion can be drawn from the 
investigation of damping, if we can only manage to separate the contribution from the 
mechanism discussed. 
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In [ll, 121 a class of spectral densities of rather a general form is considered; these 
are classified with respect to index n: 

S.(k) - k2"Su(k) (16) 
where S,(k) is any monotonically (and sufficiently rapidly) decreasing function and 2n 
is the order of zero of the function S,(k) at k = 0. The index n = 0 corrcsponds to 
monotonically decreasing functions (functions of the first type), and the indices n > 0 to 
different functions of the second type. 

The damping of plasma waves for this class of functions for the limiting cases of small 
and large k has the forms 

With the increase in n of the correlation function the power k in the law of damping of 
plasma waves increasesfor small k. For large k the law k-' does not change for arbitrary 
n; only the numerical coefficient changes. Thus, the damping of plasma waves obeys 
common regularities obtained for the damping of spin [I11 and elastic [8] waves. 

4. Anisotropic correlations 

In the previous sections we have analysed the cases when the inhomogeneities possess 
the isotropic 'form' and, consequently, are described by the isotropic functions of the 
first and second types. For the majority of 'natural' inhomogeneous media this model is 
quite valid. However, there are such cases when, either purposefully or naturally, 
anisotropic inhomogeneities are induced in the medium. Then a question arises: will 
anisotropy of the correlation properties of the inhomogeneities be revealed in a modi- 
fication of the plasma wave frequency? 

Let the inhomogeneities be described by an anisotropic correlation function of the 
first type in the following form: 

(18) 

i.e. thespatialfluctuations, whichdependon thedirection. arecharacterized by different 
correlation radii rl - k;' and r2 - k;'. At k ,  > kz the inhomogeneities stretch along 
the axis z(r2 > r , )  and in the limiting case k2+ 0 represent 'needles', which are homo- 
geneous along the axis z .  At k l  < k, the inhomogeneities are flattened (r2 < r l ) ,  and in 
the limiting case k l  + 0 they form homogeneous layers in the x-y plane. The properties 
of the layers vary randomly only along the axis z .  

The anisotropic correlation function (18) corresponds to the anisotropic spectral 
density 

K(r)  = exp[-k:(xz + y 2 )  - klz'] 

S(k)  = exp[-4(K2/k: + k:/k:)]/8d2k:k2. (19) 
Integration of equation (6)  with this spectral density in a general form results in various 
mathematical difficulties. Therefore, we consider the limiting case k = 0, which (for 
the functions of the first type) corresponds to a maximal value of the dispersion law 
modification in the isotropic material. 
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Figure 2. Dependence of the functions qs (curve 
1) and 7. (curve 2) on the anisotropy coefficient 5 
for the correlation function of the inhomogen- 
eities. 

F :'p; 
(I I 2 

I 

At k = 0 the integral (6) is solved exactly, and for the plasma frequency shift from 
its value in an ideal crystal we obtain the expression 

As,z(ki,  k2) = (ms,z - @ p ) / W p  = - ( 5 Y 2 / 4 q : ) q s . 2 ( E ) .  (20) 
Here the indices s and z correspond to oscillations whose electric field is polarized 
perpendicularly or along the axis z :  qe = keuF(wpr where k ,  = (k:k2)'/' is the effective 
correlation wavenumber of the inhomogeneities. This number remains wnstant when 
the form of the inhomogeneities, i.e. their anisotropyparameter 5 = k J k ,  changes, but 
there are no changes in the correlation volume V ,  - kF3 = k;'k;'. 

The functions V $ , ~ ( E )  depend only on the anisotropy parameter E and are the same 
when the correlation volume changes: 

[(CY' + l)/cu] tanh-' C Y -  1 

1 - [(I - m2)/a] tan-' CY 

1 - [(I - CY')/CY] tanh-' CY 

Es 1 

E >  1 

Es 1 

Ea1 v z  = c3E'"/2CY2)([(l + CY') /CY] tan-' CY - 1 

where (U2 = 11 - E21; equation (22) was first obtained in [17]. 
Of physical interest may be the different functional dependences. For example, if 

we are interested in the dependence of As,z on the 'form' of the inhomogeneities, and 
their correlation volume does not change, qe remains constant, and the dependence of 
As.z on the anisotropy parameter E is completely determined by the dependence of qs,z 
on 5. 

In E ,  
q. - and, at E * 1, qs,z - E-'/') and reach a maximum at the points E = 0.51 and 
E = 2.72,respectively(figure2). A t 5  = 1 (isotropicinhomogeneities), qs,2 = 1 andq. = 
4c. 

It is seen that the plasma oscillations polarized in different directions have different 
values of Therefore, there is a major possibility of estimating the anisotropy of the 
correlation function of the inhomogeneities from experimental research on plasma 
waves. It follows from figure 2 that the larger value of the renormalized frequency always 
corresponds to a larger correlation radius of the inhomogeneities. For the strongly 
anisotropic inhomogeneities (infinitely thin 'layers' and 'needles') the plasma frequency 
modification decreasesconsiderably incomparison with the effect caused by the isotropic 
inhomogeneities of the same correlation volume. 

The functions qS,* vanish both at E -  0 and at E +  (at E 4 1, qs - 
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Of great interest may also be the dependences of As,z on k ,  and kz when the 
correlation volume is changeable. For example, for a fixed correlation radius r ,  and an 
unlimited increase in r.(k,+ 0) the inhomogeneities take the form of a needle-shaped 
structure, which is homogeneous along the axis z with a finite 'diameter' of the needles. 
For fixed r? and an increase in r)(k,-+O) the inhomogeneities tend to a laminated 
structure (witha finite 'layer' thickness), whichis homogeneousin thex-yplane. In both 
limiting cases all the expressions for As,r diverge, except those for A, at k2-+ 0, This 
divergence is due to the following reasons. In a general case all the ~ effects caused by the 
inhomogeneities are proportional to V:" and the functions v ~ , ~  depend only on the 
anisotropy E .  In the isotropic medium the increase in the correlation radius leads to an 
increase in V,, except for v ~ , ~  = 1. For anisotropic inhomogeneities, on an increase in 
one of the correlation radii and when the value of another is constant, the correlation 
volumealsoincreases, but thefunctionsoftheformoftheinhomogeneitiesV~,~decrease. 
As a result, the divergence As,r becomes less (at k, -+ 0, k, = constant, we have 
As,z - (k, k,)-'and,atk, = constant,k,-+O, As - k;* In(k,/k,))ordisappearstotally 
(Az - kY2, at k ,  = constant, k2+ 0). Thus, the effect of increasing the correlation 
volume is predominant in all three cases discussed above. Only in one case is this effect 
counterbalanced by that of the form of the inhomogeneities. 

For simplicity we discuss the tendency towards divergence of all the expressions in 
pcrturbation theory at Vc-+ m for isotropic inhomogeneities. When the increase in r,is 
unlimited (kc- 0), the isotropic spectral density S(k) tends to a Dirac function 6 ( k ) .  
Correspondingly, each of the random realizations becomes a constant independent of 
the coordinates. Averaging in the calculation of any physical characteristic is performed 
over the ensemble where every member represents a spatially inhomogeneous medium, 
the parameters of the medium differing from those of another member of the ensemble 
by a random value. It is clear that this average has no physical sense as it is not equal to 
a corresponding average in volume for any of the members of the statistical ensemble 
under consideration; at k,-+ 0 the system loses the property of spatial ergodicity. The 
real situation for each member of the ensemble is quite trivial; there will be neither a 
dispersion law modificaton nor a damping of waves. Only a renormalization of wp by a 
finite value, which is different for each of the ensemble's members, will occur. 

5. Conclusion 

Broadening the class of the correlation functions modelling inhomogeneities (in com- 
parison with the simplest monotonically decreasing correlation functions used in [7]) 
has led to  the following results. 

Correlation functions of the second type, as well as those of the first type, result in a 
modification of (bend in) the dispersion curve for plasma waves in the vicinity of the 
characteristic wavenumber of the inhomogeneities: k, - r;'. However, the character 
of the modification is different; functions of the second type may even lead to the 
appearance of negative dispersion in the region of long waves, and it is impossible when 
the functions of the first type are applied. 

The laws of damping are quite different for the first and second types of function 
(also true for functions of the second type with a different value of index n (see (17)). 

These results are, in the main, analogous to those obtained earlier for a dispersion 
law modification and damping of spin [ll,  161 and elastic [8] waves, using correlation 
functions of the second type. In particular, the dependence of the law of damping on the 
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index n is in general regular for all kinds of wave; an exponent 2n is added to all power 
laws known for the first type of function in the region of small k .  The primary distinctive 
characteristic for plasma waves has a larger difference between the modifications of the 
dispersion law because of the functions of first and second types than those for spin and 
elastic waves. 

Anisotropy of the correlation function results in a difference in the dispersion law 
modification for plasma waves propagating in different directions. 

Thus, there are possibilities for developing a new method of investigating disordered 
media (correlation spectroscopy of plasma waves) based on the experimental study of 
the dispersion law modification and damping ofplasma waves. The method wouldenable 
one tomeasure the correlation radii and mean square fluctuationsof the electric potential 
in a medium, in analogy with the procedure of measuring similar parameters of spin 
systems by correlation spin-wave spectroscopy 141. In principle, the method allows one 
to obtain more detailed information on the inhomogeneities: to determine what type 
(first or second) the correlation functions describing the inhomogeneities is, to find the 
orientation of the axis of anisotropy and to estimate the value of anisotropy for the 
anisotropic inhomogeneities. The method of correlation spectroscopy of plasma waves 
has its own sphere of application both in the range of wavenumbers of the inhom- 
ogeneities, and in the media studied. In this sense the method discussed and other 
methods of correlation spectroscopy of inhomogeneities (spin wave, optic and elastic) 
are not competing but complementary. 
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